360 research outputs found

    Active Classification: Theory and Application to Underwater Inspection

    Full text link
    We discuss the problem in which an autonomous vehicle must classify an object based on multiple views. We focus on the active classification setting, where the vehicle controls which views to select to best perform the classification. The problem is formulated as an extension to Bayesian active learning, and we show connections to recent theoretical guarantees in this area. We formally analyze the benefit of acting adaptively as new information becomes available. The analysis leads to a probabilistic algorithm for determining the best views to observe based on information theoretic costs. We validate our approach in two ways, both related to underwater inspection: 3D polyhedra recognition in synthetic depth maps and ship hull inspection with imaging sonar. These tasks encompass both the planning and recognition aspects of the active classification problem. The results demonstrate that actively planning for informative views can reduce the number of necessary views by up to 80% when compared to passive methods.Comment: 16 page

    A Discrete Geometric Optimal Control Framework for Systems with Symmetries

    Get PDF
    This paper studies the optimal motion control of mechanical systems through a discrete geometric approach. At the core of our formulation is a discrete Lagrange-d’Alembert- Pontryagin variational principle, from which are derived discrete equations of motion that serve as constraints in our optimization framework. We apply this discrete mechanical approach to holonomic systems with symmetries and, as a result, geometric structure and motion invariants are preserved. We illustrate our method by computing optimal trajectories for a simple model of an air vehicle flying through a digital terrain elevation map, and point out some of the numerical benefits that ensue

    Downwash-Aware Trajectory Planning for Large Quadrotor Teams

    Full text link
    We describe a method for formation-change trajectory planning for large quadrotor teams in obstacle-rich environments. Our method decomposes the planning problem into two stages: a discrete planner operating on a graph representation of the workspace, and a continuous refinement that converts the non-smooth graph plan into a set of C^k-continuous trajectories, locally optimizing an integral-squared-derivative cost. We account for the downwash effect, allowing safe flight in dense formations. We demonstrate the computational efficiency in simulation with up to 200 robots and the physical plausibility with an experiment with 32 nano-quadrotors. Our approach can compute safe and smooth trajectories for hundreds of quadrotors in dense environments with obstacles in a few minutes.Comment: 8 page

    CppFlow: Generative Inverse Kinematics for Efficient and Robust Cartesian Path Planning

    Full text link
    In this work we present CppFlow - a novel and performant planner for the Cartesian Path Planning problem, which finds valid trajectories up to 129x faster than current methods, while also succeeding on more difficult problems where others fail. At the core of the proposed algorithm is the use of a learned, generative Inverse Kinematics solver, which is able to efficiently produce promising entire candidate solution trajectories on the GPU. Precise, valid solutions are then found through classical approaches such as differentiable programming, global search, and optimization. In combining approaches from these two paradigms we get the best of both worlds - efficient approximate solutions from generative AI which are made exact using the guarantees of traditional planning and optimization. We evaluate our system against other state of the art methods on a set of established baselines as well as new ones introduced in this work and find that our method significantly outperforms others in terms of the time to find a valid solution and planning success rate, and performs comparably in terms of trajectory length over time. The work is made open source and available for use upon acceptance

    HyperPPO: A scalable method for finding small policies for robotic control

    Full text link
    Models with fewer parameters are necessary for the neural control of memory-limited, performant robots. Finding these smaller neural network architectures can be time-consuming. We propose HyperPPO, an on-policy reinforcement learning algorithm that utilizes graph hypernetworks to estimate the weights of multiple neural architectures simultaneously. Our method estimates weights for networks that are much smaller than those in common-use networks yet encode highly performant policies. We obtain multiple trained policies at the same time while maintaining sample efficiency and provide the user the choice of picking a network architecture that satisfies their computational constraints. We show that our method scales well - more training resources produce faster convergence to higher-performing architectures. We demonstrate that the neural policies estimated by HyperPPO are capable of decentralized control of a Crazyflie2.1 quadrotor. Website: https://sites.google.com/usc.edu/hyperppoComment: Website: https://sites.google.com/usc.edu/hyperpp
    corecore